域适应性(DA)旨在转移标记良好的源域的知识,以促进未标记的目标学习。当转向特定的任务,例如室内(Wi-Fi)本地化时,必须学习跨域回归剂以减轻域移位。本文提出了一种新颖的方法对抗性双向反应器网络(ABRNET),以寻求更有效的跨域回归模型。具体而言,开发了差异的双向试剂架构,以最大化双向试验的差异,以发现远离源分布的不确定目标实例,然后在特征提取器和双回归器之间采用了对抗性训练机制,以产生域内不变的表示。为了进一步弥合大域间隙,设计了一个特定域的增强模块,旨在合成两个源相似和类似的类似中间域,以逐渐消除原始域的不匹配。对两个跨域回归基准的实证研究说明了我们方法解决域自适应回归(DAR)问题的力量。
translated by 谷歌翻译
最近已将基于学习的THZ多层成像用于非接触式三维(3D)定位和编码。我们通过实验验证,展示了新兴量子机学习(QML)框架的概念验证演示,以应对深度变化,阴影效应和双面内容识别。
translated by 谷歌翻译
从物理层和粗粒度接收信号强度指示符(RSSI)测量的细粒度通道状态信息(CSI)互补,中间粒度的空间光束属性(例如,光束SNR)可在毫米波( MMWAVE)在强制波束训练阶段的频带可以重新估算Wi-Fi传感应用。在本文中,我们提出了一种用于Wi-Fi的多频带Wi-Fi融合方法,该方法是在粒度的60GHz处,从Sub-6 GHz和中粒梁SNR中的细粒度CSI的特征进行分层熔化的特征匹配框架。通过以不同的粒度水平与CSI和光束SNR配对的两个特征映射来实现粒度匹配,并将所有配对特征映射到具有可读权重的融合特征映射中。为了进一步解决有限标记的培训数据问题,我们提出了一种基于AutoEncoder的多频带Wi-Fi融合网络,可以以无监督的方式预先培训。一旦预先培训了基于AutoEncoder的融合网络,我们将通过微调融合块来分离解码器并将多任务传感头附加到融合特征映射并从头开始重新培训多任务头。通过内部实验Wi-Fi传感数据集进行多频带Wi-Fi融合框架,跨越三个任务:1)姿势识别; 2)占用感应;和3)室内本地化。与四种基线方法(即,仅CSI,仅限CSIS SNR,输入融合和特征融合)进行比较演示了粒度匹配,提高了多任务传感性能。定量性能被评估为标记培训数据,潜在空间维度和微调学习率的数量的函数。
translated by 谷歌翻译
我们为主题转移学习提供了正则化框架,我们寻求培训编码器和分类器以最大限度地减少分类损失,但受潜在代表和主题标签之间的惩罚测量独立性。我们使用相互信息或分歧引入三个独立性和相应的惩罚术语作为独立性的代理。对于每项惩罚期限,我们提供了几种具体估算算法,使用分析方法以及神经批读功能。我们提供了一个脱离策略,用于将这种不同的正规化算法应用于新数据集,我们称之为“Autotransfer”。我们评估这些个体正规化策略和我们的自动转移方法对EEG,EMG和ECOG数据集的表现,表明这些方法可以改善挑战现实世界数据集的主题转移学习。
translated by 谷歌翻译
本研究报告了一种新颖的硬件友好的模块化架构,用于实现一维卷积神经网络(1D-CNN)数字预失真(DPD)技术,实时线性化RF功率放大器(PA)。我们设计的模块化性质可以实现DPD系统调整对于可变资源和时序约束。我们还提供了一种共模架构,可以使用实际功率放大器硬件循环验证DPD性能。具有100 MHz信号的实验结果表明,所提出的1D-CNN获得优越与实时DPD应用的其他神经网络架构相比,性能。
translated by 谷歌翻译
半eme被定义为人类语言的最低语义单元。半知识库(KBS)包含带有Sememes的单词的单词,已成功应用于许多NLP任务,我们相信,通过学习最小的含义单位,计算机可以更容易理解人类的语言。但是,现有的sememe kb仅基于手动注释,人类注释具有个人理解偏见,并且随着时间的流逝,词汇的含义将不断更新和改变,而人为的方法并不总是实用的。为了解决这个问题,我们提出了一种基于深群集网络(DCN)的无监督方法来构建半eme KB,您可以使用任何语言通过此方法来构建KB。我们首先学习多语言单词的分布式表示形式,使用缪斯在单个矢量空间中对齐它们,通过自我发项机制学习每个单词的多层含义,并使用DNC来群集半eme。最后,我们仅使用英语的10维半度空间完成了预测。我们发现,低维空间仍然可以保留SEMEMES的主要特征。
translated by 谷歌翻译
预计机器人将取代诸如家务之类的琐碎任务。其中一些任务包括执行的无毛线操作,而无需抓住对象。非忧虑的操作非常困难,因为它需要考虑环境和对象的动态。因此,模仿复杂行为需要大量的人类示范。在这项研究中,提出了一种自我监督的学习,该学习认为动态以实现可变速度进行非骚扰操作。所提出的方法仅收集自主操作期间获得的成功动作数据。通过微调成功的数据,机器人可以学习自身,环境和对象之间的动态。我们尝试使用对24个人类收集的培训数据训练的神经网络模型来挖掘和运输煎饼的任务。所提出的方法将成功率从40.2%提高到85.7%,并成功完成了其他物体的任务超过75%。
translated by 谷歌翻译
本文提出了一种新颖的互动计划方法,该方法仅使用触觉信息来利用阻抗调谐技术,以应对环境不确定性和不可预测的条件。拟议的算法根据与环境的触觉互动并根据需要调整计划策略的触觉计划。考虑了两种方法:探索和弹跳策略。勘探策略在计划中考虑了机器人的实际运动,而弹跳策略则利用了机器人的力量和运动向量。此外,根据计划的轨迹进行自我调整阻抗,以确保合规接触和低接触力。为了显示拟议方法论的性能,进行了两个具有扭矩控制器机器人臂的实验。第一个认为没有障碍的迷宫探索,而第二个包括障碍。在两种情况下,分析了提出的方法性能并与先前提出的解决方案进行比较。实验结果表明:i)机器人可以根据与环境的相互作用在最可行的方向上成功地计划其轨迹,ii)尽管达到了不确定性,但与未知环境的合规性相互作用。最后,进行了可伸缩性演示,以显示在多种情况下提出的方法的潜力。
translated by 谷歌翻译
本文提出了来自Covid-19患者CT体积的肺部感染区的分段方法。 Covid-19在全球范围内传播,造成许多受感染的患者和死亡。 CT图像的Covid-19诊断可以提供快速准确的诊断结果。肺中感染区的自动分割方法提供了诊断的定量标准。以前的方法采用整个2D图像或基于3D卷的过程。感染区域的尺寸具有相当大的变化。这种过程容易错过小型感染区域。基于补丁的过程对于分割小目标是有效的。然而,在感染区分割中选择适当的贴片尺寸难以。我们利用分段FCN的各种接受场大小之间的规模不确定性以获得感染区域。接收场尺寸可以定义为贴片尺寸和块从斑块的卷的分辨率。本文提出了一种执行基于补丁的分割的感染分段网络(ISNet)和尺度的不确定性感知预测聚合方法,其改进分割结果。我们设计ISNET到具有各种强度值的分段感染区域。 ISNet具有多个编码路径来处理由多个强度范围归一化的修补程序卷。我们收集具有各种接收场尺寸的ISNet产生的预测结果。预测聚合方法提取预测结果之间的规模不确定性。我们使用聚合FCN来在预测之间的规模不确定性来生成精确的分段结果。在我们的实验中,使用199例Covid-19案例,预测聚集方法将骰子相似度评分从47.6%提高到62.1%。
translated by 谷歌翻译
本文提出了COVID-19患者肺部肺部感染和正常区域的自动分割方法。从2019年12月起,2019年新型冠状病毒疾病(Covid-19)遍布世界,对我们的经济活动和日常生活产生重大影响。为了诊断大量感染的患者,需要计算机诊断辅助。胸部CT对于诊断病毒性肺炎,包括Covid-19是有效的。 Covid-19的诊断辅助需要从计算机的CT卷的肺部条件的定量分析方法。本文用Covid-19分割完全卷积网络(FCN)提出了来自CT卷中的CT卷中肺部感染和正常区域的自动分割方法。在诊断包括Covid-19的肺部疾病中,肺部正常和感染区域的条件分析很重要。我们的方法识别CT卷中的肺正态和感染区。对于具有各种形状和尺寸的细分感染区域,我们引入了密集的汇集连接并扩张了我们的FCN中的互联网。我们将该方法应用于Covid-19案例的CT卷。从轻度到Covid-19的严重病例,所提出的方法在肺部正确分段正常和感染区域。正常和感染区域的骰子评分分别为0.911和0.753。
translated by 谷歌翻译